Nonlinear Control System Using Learning Petri Network

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative learning neural network control for nonlinear system trajectory tracking

This paper presents a neural network controller for nonlinear system trajectory tracking, which works in an iterative learning manner. The controller is composed of many local neural networks and every point along the desired trajectory has its own one for approximating nonlinearity only nearby. This makes that every local neural network can be possessed of a simple structure and less neurons. ...

متن کامل

Nonlinear System Identification Using Neural Network

Magneto-rheological damper is a nonlinear system. In this case study, system has been identified using Neural Network tool. Optimization between number of neurons in the hidden layer and number of epochs has been achieved and discussed by using multilayer perceptron Neural Network.

متن کامل

Nonlinear System Control Using Neural Networks

The paper is focused especially on presenting possibilities of applying off-line trained artificial neural networks at creating the system inverse models that are used at designing control algorithm for non-linear dynamic system. The ability of cascade feedforward neural networks to model arbitrary non-linear functions and their inverses is exploited. This paper presents a quasi-inverse neural ...

متن کامل

Modeling of Access Control System using Petri-nets

In this paper we purpose a Petri-net-based method for describing the model of an object-oriented design of Access Control System (ACS), by specifying the object interaction scenarios as Petri nets with an Augmented Marked Petri Net (AMPN) structure. After synthesizing these scenarios into an integrated net, we analyze the system based on the special properties of AMPN. For unique representation...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEJ Transactions on Electronics, Information and Systems

سال: 1998

ISSN: 0385-4221,1348-8155

DOI: 10.1541/ieejeiss1987.118.6_873